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Abstract

Out of a wide gap between price of commodity paid by final consumers and the one

obtained by farmers some part is attributed to cost of transportation, and the remain-

ing is the markup that traders keep for themselves. Previous literature can explain

part of the price difference between the origin and the destination of a good using the

observed components of a market, but they still leave an unexplained part of the gap

open to being driven by either the trade costs or the markups. Our paper proposes

a new method, which allows us to estimate trade costs and markups separately using

only price data. The method explores the idea that the markups along the distribution

chain of a good are shaped by the same final demand, and, therefore, respond similarly

to a reduction in the price of a good at the initial point of the chain.

∗The authors thank Igor Livshits, Kateryna Bornukova and Lev Lvovsky for helpful comments. The au-
thors are also grateful to Participants from GSOM Emerging Market conference in Saint Petersburg, XX
April International Academic Conference In Higher School of Economics, Moscow, and 2nd Baltic Economic
Conference in Riga. The authors acknowledge the financial assistance from SIDA and CTED NYU
†Corresponding author. BEROC, Minsk, Belarus, arshavskiy@beroc.by
‡NYU, New York, NY, USA, yn1@nyu.edu
§NYU Abu Dhabi, Abu Dhabi, UAE, heitor.pellegrina@nyu.edu



1 Introduction

In developing countries, there are wide gaps between the price of food paid by consumers

and the one obtained by farmers. These gaps are attributed to two potential factors: the

high costs of trading goods and the lack of competition between traders, which allows them

to put high markups on their services. Measuring these factors correctly can be of immense

help to policymakers since each of them tends to be addressed with different investments.

However, doing so is challenging and we still have limited knowledge about their relative

importance to price gaps.

The reason why it is challenging to separately measure trade costs and markups is because

trade costs are not fully observed (see, e.g., Anderson and Wincoop (2004)).1 If trade

costs were observed, then the portion of the price gap unexplained by trade costs could be

attributed to markups an vice versa. To measure trade costs, the current methods assume

perfect competition between traders (see, e.g., Fackler and Goodwin (2001)), which implies

that markups are equal to zero and that all the price gaps come from trade costs.

This paper proposes a method that explores the variation in price gaps within the distri-

bution chain of a good to recover trade costs and markups from price data. Our method is

based on two steps. First, we estimate the difference in trade costs between two segments of

a chain. To do so, we estimate how much a reduction in the price of a good at the beginning

of a chain is passed along by traders and how much they keep for themselves in the form of

markups. We use these estimates to infer the difference in the price gap between two seg-

ments of a chain that comes from differences in markups, which then allow us to attribute

the remaining difference to differences in trade costs.2 Second, we fully recover the level

of trade costs. To do so, we combine our measure of the difference in trade costs between

segments with assumptions about trade costs between crops to fully recover the level of trade

1For example, even if data on the transportation cost of a good is available, information on the insurance
paid by traders may not be.

2In particular, under the demand assumptions used in Atkin and Donaldson (2015), markups in different
segments of the chain are proportional to each other and price variations within the distribution chain of a
good contains information on this proportionality.
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costs in each segment.

To illustrate our method, consider the case of a distribution chain with two segments, a

downstream and an upstream market, which is what we use in our model. In the upstream

stage, wholesale traders pay a price Po for goods at an origin wholesale market and move

them to a destination wholesale market to sell them for Pw. In the downstream stage,

retail traders pay Pw and sell goods to the final consumer by Pr. As an illustrtive example,

imaginge the following: one dollar decrease in Po leads to 80 cents decrease in Pw and 70

cents decrease in Pr. Therefore, the traders at the wholesale stage get 20 cents and the ones

at the retail stage get 10, with the remaining 70 cents being passed to the final customer.

In this case, markups in the wholesale stage are twice the markup in the retail one.

To understand how we can recover trade costs consider the following set of equation

Pw − Po = τw + µw, (1)

Pr − Pw = τr + µr. (2)

The first equation is the decomposition of the price difference between wholesale market

and origin market into trade cost and traders’ markups. The second equation is the same

decomposition between retail and wholesale markets at the origin. τw and τr are the trade

costs and µw and µr are the markups in each segment. Define α = µw
µr

. In the example above

α = 2. In the paper we show that α can be recovered using variation in the price data in

much more general settings. More specificaly, it can be constructed using estimates of how

a price change in the starting point of a segment pass-through to the next ones.

Once we have an estimate for α, we can combine equations (1) and (2) by multiplying

equation (2) to α and subtracting equation (1) from it, which gives us

α(Pr − Pw)− (Pw − Po) = ατr − τw. (3)

This equation is the fundamental contribution of our method. Notice, that it contains

2



only prices, transportation costs, and the coefficient that can be estimated using prices.

Armed with equation (3), we can recover the levels of trade costs by exploring price

different for other chains where the trade costs are the same. For two different commodities

with two different α but the same trade costs, we can notice that τr and τw are recoverable

just by solving a system of two equations with two unknowns. In our case, we extend the

method to allow for different crops.

Before applying the estimator to the data we study its theoretical properties using Monte-

Carlo simulations. We conclude that our estimator behaves the best if there is a significant

variability in competition structure across commodities (in particular, α’s are different from

each other), and there is a significant degree of monopolization for both retail traders sector

and wholesale traders sector. We notice that estimators behave much worse if one of the

sectors is close to perfect competition.

As an application we use our method for a few selected markets in Ghana, however, for

the majority of cases we were not able to reject the hypothesis of perfect competition in the

retail sector in Ghana.

Our work draws from Atkin and Donaldson (2015), who develop a method to estimate the

impact of distance on trade costs in the presence of imperfect competition between traders.

We use two key ingredients from their model. First, the fact that the pass-through rates,

which can more easily be estimated in the data, serves as a sufficient statistic for the effect of

competition between traders. Second, the Bulow-Pfleidered demand structure (see (Bulow

& Pfleiderer, 1983)), which provides tractable equations that we can use to treat the price

differences. The key distinguishing feature of our paper is that, since they use price variation

across space, they do not separately identify unobserved shocks to the demand from shocks

to the trade costs. They control for these shocks by interacting fixed effects with estimates

of the pass-through, which would jointly capture the effects.

This paper contributes to research in international economics measuring trade costs

(Anderson & Wincoop, 2004). More recently, this literature has emphasized the importance
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of the intra-national trade costs for the welfare gains from trade (Costinot & Donaldson,

2014; Ramondo, Rodriguez-Clare, & Saborio-Rodriguez, 2016; Sotelo, 2018). This literature

has largely focused on the estimation of trade costs between two points in a market, the ori-

gin and the destination of a good. Here, we estimate trade costs along the distribution chain

of a good. Besides the potential policy interest in decomposing the importance of trade costs

in different stages of the distribution chain, we show that by focusing on variation within

the distribution chain we can give a step further and recover the markups in each segment.

The remainder of this paper proceeds as following. Section 2 outlines the theoretical

model. Section 3 provides methodology for it to be applied to data. In section 4 we do

simulations and apply the method to the simulated data. In section 5 we provide an empirical

example from markets in Ghana and section 6 concludes.

2 The Model

In this section, we first describe a version of the model with one origin and destination for a

good following Atkin and Donaldson (2015) to discuss the intuition behind our identification.

We then present a model of the supply distribution chain of a good where traders in each

stage of the chain enjoy some market power. We describe a simple model with one good

and one origin and solve for the equilibrium of this model using a generic demand function.

We introduce the parametrization of the demand function to obtain the equations used to

identify the trade costs, and introduce several origin and crops together with the additional

assumption that we use to take the model to the data.

2.1 Intuition for identification

The contribution of our paper as well as the paper by Atkin and Donaldson (2015), is that the

complex parameters can be identified from the data using only price data. This is especially

important for developing countries where quantity data is usually unavailable while price
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data of a very good quality is in abundance (see, for example, (Arshavskiy, Dave, & Nyarko,

2018)).

The intuition for why price data alone can be enough to identify complex parameter of

competition structure can be easily seen from the following analysis (see Figure 1).

Figure 1: Simple example

Consider a standard profit-maximizing monopolist on a single market. She faces demand

function P (Q), and has marginal revenue MR(Q). Assume marginal costs are constant and

equal to MC. We are analyzing the reaction of equilibrium price to a reduction in marginal

cost.

If marginal cost drops by ∆, price will go down by ∆ ·
dP
dQ

dMR
dQ

, which, with some math can

be expressed as ∆ · 1
2+ε

, where ε =
d2P
dQ2

dP
dQ

·Q is the slope elasticity of demand.

Next, if we assume that the slope elasticity of demand is constant, and we know how the

price reacts to a change in the marginal cost, we can compute the slope elasticity of demand.

In relation to our settings, marginal cost is a combination of origin market price and

transportation cost, the reaction of the price to the change in the marginal cost close to

the pass-through rate and the slope elasticity of demand contains information regarding
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competition and market structure.

Consider a model as the one described in Atkin and Donaldson (2015), where the price

gap between the final destination of a good at the retail market and its price at the origin

can be written as

Pr − Po = τ + µ(c, φ,D),

where Pr is the price at the retail market, Po is the price at the origin, τ is the trade cost and

µ is the markup, which is a function of the marginal costs of traders c, the competitiveness

environment φ and the demand conditions D. The change in the price gap given by a change

in trade cost in this case is given by

d(Pr − Po)
dτ

=
∂µ

∂c

∂c

∂τ
+
∂µ

∂φ

∂φ

∂τ
+
∂µ

∂D

∂D

∂τ

= ρ+
∂µ

∂φ

∂φ

∂τ
+
∂µ

∂D

∂D

∂τ

Here, ρ = ∂µ
∂c

is the pass-through rate. The equation above shows the challenges of separating

trade costs from markups. When we assume perfect competition between traders. The pass-

through rate is equal to 1, and the second and third term disappears, since the markups

are always equal to zero. Any change in trade costs translate directly into price gaps in

the data. In this case, trade costs are identified. However, under imperfect competition,

one has to adresses a number of issues. First, the increase in trade costs does not translate

directly into an increase in price gap. The pass-through controls this transmission of the

shock on trade costs. Second, increasing trade costs can be associated with changes in the

competition environment as captured by the second term on the right hand side, as well as

changes in the demand. The key intuition in our identification comes from the fact that, by

looking within the distribution chain of a good, we can assume that the price gap between

two segments, which is associated with an increase in τ , has no effect on the demand so that

the third term disappears. Also, the second term can be recovered from the data with the

measures of pass-through.
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Next, we present the model where we extend the current framework to include a middle

stage in the distribution chain of a good, the wholesale market.

2.2 Modelling the distribution chain of a good

2.2.1 Setup

Timing. Now, we consider a distribution chain of a single product that contains two stages

before reaching the final consumer. Traders in each stage of the market play an oligopolistic

game with the following timing. First, there is an upstream stage where wholesale traders

purchase goods at an origin city from farmers for an exogenous price Po and transport them

to the outskirts of a destination city where wholesale markets are located. Traders at this

stage set their prices based on the competition with other traders and their conjectures about

the demand of retail traders for goods from wholesale traders. Second, there is a downstream

stage where retail traders purchase the goods from the outskirts of the destination city for Pw

and take them into retail markets inside the city where final consumers are located. Retail

traders set the price for final consumers Pr based on the competition with other traders and

the actual aggregate demand for goods at the retail market.

Figure 2: Supply chain

Upstream stage: the wholesale market. A commodity is produced around a single

origin city. Goods are sold at a wholesale market at the outskirts of this city for price Po

per one unit. We assume Po is exogenous. The marginal cost of transporting them to the

destination wholesale market is constant and equal to τw per one unit. We assume that
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there is an exogenous number of traders mw in this stage. Each trader chooses quantity qw,

with total quantity being equal to Qw, based on a relationship between the price Pw and the

potential demand for their product at that price in the wholesale market at the destination

that is taken as given,

Pw = Pw(Qw). (4)

The relation Pw = Pw(Qw) in (4) is interpreted as the conjectures of the wholesalers as

to what is the relationship between aggregate sales and prices in the wholesale market. We

construct the equilibrium so that these conjectures will be borne out.

With the assumptions above, we can define the following profit function that is maximized

by farmers 3

Πw ≡ Pw(Qw)qw − (Po + τw)qw. (5)

The first order condition gives us

∂Pw(Qw)

∂Qw

· ∂Qw

∂qw
· qw + Pw(Qw)− P0 − τw = 0. (6)

Downstream stage: the retail market. The final consumers in the retail market have

a demand function Pr = Pr(Qr), which retail traders use in their profit function. Traders

in the retail market take the upstream price Pw as given. Under various market structure

assumptions, we will determine the market equilibrum output Qr at the retail stage as a

function of the given upstream price Pw. Later on we will use this relationship to create

the conjections of wholesalers in equation (4), which in turn will enable us to solve for the

equilibrium of our two stage model.

3Our results remain the same if we consider that traders have a fixed cost of Fw to operate.
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Each trader chooses an output level qr by maximizing the following profit function

Πr ≡ Prqr − (τr + Pw)qr (7)

where qr is the quantity sold individually by the retail trader and τw is the marginal trade

cost of taking the product from wholesale market at the outskirts of the city into the retail

market inside it. From the first order conditions, we obtain

Pr = Pw + τr −
∂Pr
∂Qr

· ∂Qr

∂qr
· qr.

Now, we assume that there are mr identical traders and that the effect of each individual

trader on total quantity Qr is constant and equal to θr ≡ dQr

dqr
. We also define a competi-

tiveness index of the market as φr ≡ mr

θr
, where mr is the number of traders in the market.

Using these definitions, we can write the first order condition as

Pr = Pw + τr −
1

φr

∂Pr
∂Qr

Qr (8)

Note that equation (8) captures the effect of the marginal cost (Pw + τr) and a markup term

(− 1
φr

∂Pr

∂Qr
Qr) on the retail price Pr.

The above oligopoly model for the retail market took as fixed a value of the Pw. The

solution to (8) will result in an optimal aggregate quantity in the retail stage which is a

function of Pw, Qr = Q∗
r(Pw). Upon inverting we can write this as

Pw = P ∗
w(Qr). (9)

2.2.2 Equilibrium

Now, we need to specify the conjectures that the wholesale traders have regarding the rela-

tionship between their quantities and the prices they receive, Pw = Pw(Qw) in equation (4).

The wholesale traders upstream take as given the reaction function of traders in the retail
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market as we have just described and, in particular, take as given the relation Pw = P ∗
w(Qr)

in (9). Traders in the wholesale market believe that the relationship between total output in

their market Qw and the price in their market Pw is given by the equation(9) with Qw = Qr,

or Pw = P ∗
w(Qw).

We can now go back to the maximization problem of the wholesale traders (5)

Πw = P ∗
w(Qw)qw − (Po + τw)qw.

The first order condition in (6) can now be written as

∂P ∗
w(Qw)

∂Qw

· ∂Qw

∂qw
· qw + P ∗

w(Qw)− P0 − τw = 0.

Note here that ∂Qw

∂qw
is determined by the conjectures the traders have about the response of

their fellow traders to their own individual change in quantity. The expressions P ∗
w(Qw) and

∂P ∗
w(Qw)

∂Qw

are obtained from (9) the reaction functions of traders in the retail market.

Defining φw = mw

θw
, recalling that Qw = mwqw, and rearranging (6) we get:

Pw = P0 + τw −
1

φw

∂Pw
∂Qw

Qw (10)

Qw = Qr since Qw is the total quantity that has been brought and sold to the retail

traders (equation (5), revenue of the wholesale traders), and Qr is the total quantity that

has been bought by the retail traders (7). We can define Q ≡ Qr = Qw. Therefore,

Pw(Qw) = Pw(Qr) = Pw(Q) (equation (9)), and we can use Q everywhere instead of Qw and

Qr.

Equation (10) becomes

Pw = P0 + τw −
1

φw

∂Pw
∂Q

Q, (11)

and equation (8) becomes
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Pr = Pw + τr −
1

φr

∂Pr
∂Q

Q, (12)

Pr, Pw and Q are equilibrium objects which are defined from these equations and the

demand equation Pr = Pr(Q). ∂Pw

∂Q
can also be expressed from primitives using equation (8)

∂Pw
∂Q

=
∂Pr
∂Q

+
1

φr

∂2Pr
∂Q2

Q+
1

φr

∂Pr
∂Q

=
∂Pr
∂Q

(
1 +

1 + Er(Q)

φr

)
, (13)

where Er(Q) ≡
(
∂2Pr

∂Q2 /
∂Pr

∂Q

)
Q is the slope elasticity of the demand curve. Substituting ∂Pw

∂Q

from (13) into (11) we get

Pw = P0 + τw −
1

φw

(
1 +

1 + Er(Q)

φr

)
∂Pr
∂Q

Q (14)

We can also substitute Pw in (12) with the expression in (14) and get

Pr = P0 + τw + τr −
1

φw

(
1 +

1 + Er(Q)

φr
+
φw
φr

)
∂Pr
∂Q

Q (15)

Equation (15) has a very interesting economics interpretation: the final price Pr is the

original price P0 plus all marginal costs necessary to reach the final consumer τw + τr and

plus the combined markup for both oligopolistic markets.

Finally, equations (15), (14) and exogenous demand equation Pr = P ≡ P (Q) define the

solution to the endogenous objects Pr, Pw and Q as functions of the parameters employed

by the model. With the equilibrium of the model in hand, we can now discuss the additional

assumption required to identify trade costs from price data.

2.3 The case of constant slope elasticity

As was shown in the example section 2.1, the condition that allows us to connect the model

and the data is a certain assumption on the demand function. The slope elasticity of the

demand curve, Er(Q), should be constant. As discussed in (Atkin & Donaldson, 2015) and
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(Bulow & Pfleiderer, 1983) the demand function needs to take the following form (also called

Bullow-Pfleidered demand function).

P (Q) = A− b(Q)δ (16)

where δ > 0, A > 0 and b > 0.4

It is easy to see that in this case we have Er(Q) = 1− δ and that equations (14) and (15)

can be re-written as follows

Pw =
φw

δ + φw
(P0 + τw) +

δ

δ + φw
(A− τr) (17)

Pr =
φr

δ + φr
· φw
δ + φw

· (P0 + τw + τr) +
δ · (δ + φr + φw)

(δ + φr)(δ + φw)
· A (18)

These equations will take an important part in the estimation of the model parameters.

They, however, contain a variable that is impossible to pick from the data from only price

data: the demand function parameter A. Nevertheless, we can combine the equations and

get another euqation, which, will already be cleaned of A. We multiply the first equation by

δ
δ+φr

and substruct from it second equation to get the following simple expression

Pw − Pr − α · (Pr − Pw) = τw − α · τr (19)

where α = δ+φr
φw

.

To understand better intuition behind α we introduce the pass-through rates, i.e., the

coefficients that shoow how much is passed to the wholesale and retail markets as a reaction

to a price decrease at the origin.

Define ρw ≡ φw
δ+φw

and ρr ≡ φr
δ+φr

· φw
δ+φw

. Next, we conduct the following ”thought

4In a more general case Bullow-Pfleiderer demand has three different functional forms for δ > 0, for
δ = 0 and for δ < 0. For us, however, to be able to identify the trade costs completely, it is important that
δ > 0.
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experiment”: assume that proce at the origin, Po, drops by 1. As a result, Pw drops by

ρw and Pr drops by ρr, which is obvious from equations (17) and (18). α, expressed via

pass-through rates, can be written as

α =
1− ρw
ρw − ρr

(20)

Therefore, α is the ratio of the markup that the wholesale traders receive and the markup

that the retail traders receive. The fact that we can estimate α from the price data allows

us to pin down the transportation costs.

The equarions (17), (18) and (19) together with the definition of α, equation (20), are

the main equations that will be used in the estimation in the sections that follow.

3 Taking the model to the data

So far, to simplify the exposition of the model, we abstracted from multiple periods (t) and

crops (k). To discuss the estimation of the model, we now have to bring the subscripts

associated with each of these dimensions. We also introduce some assumptions.

Assumption 1: We have at least two commodities with the same origin and destination

While the estimation of the vast majority of the parameters do not require it, we can

identify and estimate transportation costs only if we have more than one commodities trans-

ported along the same route.

Assumption 2: Parameters: τw, τr, φ
k
w, φkr , δ

k and Ak are fixed over time.

We can imagine that transportation costs may be changing over long periods, however,

for estimation we can always pick time periods where these parameters are constant.

Assumption 3: τw, τr are the same across different commodities.

The application of this model requires us to pick commodities with similar transportation

costs. Alternatively, we are only able to estimate some linear combination of τw and τr.
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Assumption 4: Demand fluctuations at the destination are independent of prices at

the origin, P0 and transportation costs τw and τr.

This is the most important assumption that allows us to consistently estimate key model

parameters. Atkin and Donaldson (2015) provide some arguments why this assumption is

reasonable in a similar set-up.

We esttimate the parameters in two steps.

In step 1 we take to data equations (17) and (18). This is simple enough: for each origin

and destination we take three price series: P k
0,t, P

k
w,t and P k

r,t. We regress P k
w,t to P k

0,t and P k
r,t

to P k
0,t for each commodity separately. We use the estimates for the next step.

In step 2 we write equation (19) for the two commodities that we chose. Instead of P k
0,t,

P k
w,t and P k

r,t we can use average price. The estimates of α can be obtained by manipulating

the estimates from step 1. The details are as follows

3.1 Step 1

In this step we conduct four regressions

Regressions (21) and (22) are for commodity 1:

P 1
w,t = c11 + ρ1w · P 1

o,t + ε11t (21)

P 1
r,t = c12 + ρ1r · P 1

o,t + ε12t (22)

Regressions (23) and (24) are for commodity 2:

P 2
w,t = c21 + ρ2w · P 2

o,t + ε21t (23)

P 2
r,t = c22 + ρ2r · P 2

o,t + ε22t (24)
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We estimate coefficients ρ1w, ρ1r, ρ
2
w and ρ2r from these regressions and then take the

estimates to derive estimations of α1 and α2.

The estimate for α1 is

α̂1 =
1− ρ̂1w
ρ̂1w − ρ̂1r

(25)

The estimate for α2 is

α̂2 =
1− ρ̂2w
ρ̂2w − ρ̂2r

(26)

3.2 Step 2

In the step 2 we take equation (19) for two commodities, we use stimates for α1 and α2 that

we derived earlier, we take average prices for origin, wholesale, and retail, and we compute

transportation costs τw and τr as a solution to a system of equations

P̄ 1
w − P̄ 1

r − α̂1 · (P̄ 1
r − P̄ 1

w) = τw − α̂1 · τr (27)

P̄ 2
w − P̄ 2

r − α̂2 · (P̄ 2
r − P̄ 2

w) = τw − α̂2 · τr (28)

The solutions to these equations will be our estimates for τw and τr.

4 Simulations

To study the properties of our estimators we conducted Monte-Carlo simulations. We simu-

late price data for two commodities. We use arbitrary values for model parameters and we

use our model to smulate price data series. Then we add a little noise and use our method

in an attempt to recover the parameter values of our interest, i.e., transportation costs.
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α1 α2 T τW τW SDEV (τW ) τR τR SDEV (τR)

1.4 1.5 600 60 73.5 27.4 20 29.0 18.5
0.9 1.3 600 60 59.0 5.0 20 19.1 4.6
1.1 1.7 600 60 59.6 3.5 20 19.7 2.5
0.7 1.3 600 60 59.8 2.2 20 19.8 2.2
1.2 1.1 600 60 73.3 30.8 20 31.9 26.9
3.6 3.9 600 60 74.2 21.9 20 23.6 5.8
4.1 3.5 600 60 71.5 28.0 20 23.3 7.7
3.3 4.0 600 60 68.6 25.1 20 22.1 6.5
3.8 3.6 600 60 76.8 20.4 20 24.6 5.6
3.8 3.8 600 60 78.4 23.4 20 24.8 6.1

We conduct a number of simulations for different parameter values. In each simulation

we use the following algorithm.

• We work with K = 2 commodities

• We define the length of the series. We use T = 600 time periods.

• For each commodity we randomly generate values for exogenous parameters P0,t, φw,

φr, δ, A, and also τw and τr.

• Using equilibrium equations we solve for price serieses Pw,t and Pr,t.

• We repeat the following 10,000 times

– We add a small noise to the prices

– Using our method we recover φw and φr.

• We compute mean and variance of the estimates and report them

We conduct ten series of simulations each with the following parameter values. For the

sake of clarity we report only the most important variables.

Given these results we can conjecture the following properties of the estimators.

• As we increase the length of the series the variance of the estimator decreases5

5We also condicted simulations for T = 200
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• Our estimator behaves the best when both retail and wholesale markets admit a sig-

nificant degree of monopolization. In other words, if one market is close to perfect

competition the variance of our estimator is very high

• If α1 is close to α2 the variance of the estimator is very high

We also attempted to do the simulations with more than two commodities. However, so

far it is unclear how to combine the data in an efficient way.

5 Ghanaian data example

We use price data from Ghana as an example application for our theory. Our data source

for agricultural prices comes from the Ministry of Food and Agriculture (MOFA). For this

example we chose price data from two ”polar” markets in Ghana: Bolgatanga (on the north

of the country) and Accra (on the south of the country). We pick two commodities: Cowpea

and Millet since it is reasonable to argue that the tranportation costs are similar. We pick

data from Jan 2013 to Dec 2015.

The figure 3 shows the data for wholesale prices at the origin market (Bolgatanga) and

both retail and wholesale prices at the destination market (Accra).
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Figure 3: Price series for cowpea and millet

6 Conclusion

Historically, researchers have been estimating trade costs just by looking at price differences

at different locations. These estimations assume perfect competition and are biased in the

environment where traders have monopolistic power (Atkin and Donaldson (2015)). We

also analyze the environment with monopolistically competitive traders and we introduce a

supply chain of traders delivering goods to the final location via one or more intermediary

points. We show that if the demand on the intermediate market is shaped by the demand

on the final market all components of price gaps can be estimated using variations in prices.

We attempted to apply the setting to agricultural markets in Ghana where good price

data is available for both wholesale and retail markets and the wholesale market represents

the intermediate market where the demand is shaped by the same final demand as in the

retail market.
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